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THE AERODYNAMICS OF SMALL REYNOLDS NUMBERS

F.W. Schmltz /149"

1. Generatin$ Supportin 8 Data for Work on the "Ludwig-Prandtl-
Prize"

The airfoil measurements discussed in the following replenish

the wind tunnel measurements (from 1937 to 1945) communicated in

Report No. 130 of the Lilienthal-Society, viz., presented explicitly

in the book of the author [18], in the range of Reynolds numbers

<200,000. The surprising results cleared up the behavior of the air-

foil in the critical transition from the laminar to the turbulent

boundary layer, which plays a more complex role in model or bird

wings than in large airplanes.

These results should give schools especially a basis for a con-

nection betueen flight physics and its practical application in air-

plane model construction. For this purpose it Js the task of the

"Committee for Aerodynamics at Low Velocities," which was formed as

part of the Scientific Society for Aeronautics in 1953, to generate

further data for the 1937 announced "Ludwig-Prandtl Prize for the

promotion of flight physics in connection with airplane model con-

struction" by the Lilienthal-Society for Aeronautical Research, and

renewed 1953 by the WGL, respectively. Essentially, the results of

thi_ work for the "Ludwig-Prandt] Prize" are to serve the interested

teachers and students as basis for the solution of experimental and

theoretical tasks in scientific teams of advanced level schools and

technica_ colleges, to generate a vocational stimulus for aeronaut-

ical studies. In accordance with this aim an attempt will be made

below to describe the problems in a manner for general understanding.

2. Re--Number Ranges

vt
The Reynolds-number Re = ---denotes the physical dimensionalv

relationship of the flow around a body (velocity v in cm/s, profile

*Numbers in the margin indicate pagination in the foreign text.
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depth t in cm, kinematic viscosity of air v = 0.143 cm e/s at 13°C

: and 760 torr). The first table of numbers gives an overview over

the tie-number range from commercial airplane to butterfly.

Table 1.

Commercial airplanes Re = 3.10 v

_ Sport airplanes 107

Gliders at v 3.10 _, max

Gliders at vlain 6.105
, Training gliders 106

Captive aircraft models Re _ 120,000...320,000

Large motorized airplane models 60,000...160,000

Medium size motorized and large
glider models 30,000...100,000

Small airplane models 15,000... 60,000

Hangar airplane models S,000... 30,000

Albatros sailing Re _ 200,000

Silver gull sailing 100,000

Wall sailor gliding 4 ° 000

Butterfly gliding 3,000... 7,000

_'ith the exception of the largest ocean flying Albatros (_) = 16 m/s)

and tile fast (v = 20 to 50 m/s) fl)'ing captive aircraft, the flight

of both models and birds happens to be below the very low Re-number

limit of about 150,000. This is a region in which the flow around

the airfoil, as well as its force, have the unpleasant quality of

changing spasmodically. Beyond this range in the standard flight

region up to the proximity of sonic -_peed no spasmodic but only a

small, continuous and rational change may be observed. The well- i

known t;6ttinger profiles [1]), measured at Re _ 420,000, are ade-

quate for the region of gliders and small private airplanes, each

with a polar diagram, but not for the region of model and bird

flight, as the following series of measurements covering the snmll

region of Re _ 14,000 to 180,000 per profiles covering 2 to 8 polars,
show. Each airfoil must overcome a critical flow condition within

2
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this region, since the subcritical laminar detached boundary layer

of the upper airfoil at low velocities becomes turbulent at a crit-

' ical Re-number and becomes attached; the lifg then increases spas-

modically, the drag decreases correspondingly and model and bird

become airworthy.

The smaller the flight model the more desirable is the turbu-

lent, hypercritical condition at a smaller Re-number. This can be

achieved by a suitable choice of airfoil or by means of artificial

turbulence, as shown by nature in the flight of birds and insects.

I' contrast to the above, pains are taken to maintain the /150

laminar condition of the boundary layer of large airplanes, with

flight ranges of 10-100 times the Re-number, as long as possible

because of its low friction resonance. This is done by using

highest surface polish and by "laminar profiles," since turbulence

is achieved there anyway. The airplane model flies better with a

"turbulent profile," which is similar to the profile of a bird wing.

Moreover, the bird feathers have great relative roughness; the

dragol_fly wings have even transverse folds and a sharp-toothed front

edge. Tile large airplane wing is prone to crash even with a small

amount of ice buildup at the leading edge.

3. Justification of Special Test Methods

The Re-number signifies the ratio of the work of acceleration

to the friction of a body in a flowing medium, or the ratio of the

mean increment of inertia to the viscosity of the flowing medium.

For a large Re-number inertia forces govern the flow condition; for

a low Re-number the viscosity forces do it. The laminar condition

of flow at low Re-number is, therefore, to be interpreted in such a

manner that with adequate viscosity small perturbttions are

dampened, a certain wall roughness is smoothened and the laminar
surface friction is therefore smaller than the turbu)ent one for the

same Re-number. This is well known and the points of instability

3
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may be calculated by meal,s of the new boundary layer theory of

Tollinsen and Schlichting [3].

To describe and measure laminar flow processes on flight bodies

in wind tunnels correctly, the air flow must be made largely turbu-

lence-free. For this purpose, five means are available:
I

1. Installation of 2 or 3 fine wire mesh sieves in the jet

prechamber with a total CwR A 2, which are mounted behind

, the honeycomb at 30 cm distances with the CwR decreasing
towards the jet.

2. Installation of a long region o£ stabilized flow between

wire mesh sieves and the jet, as well as the most important

measure:

3. Installation of a slender jet wlth a contraction ratio of

at least S:I (maximum of 20:1) since convergent £1ow, or

pressure drop, constitute reductions of turbulence.

4. A collecting cone with a well rounded inlet, small diffuser

expansion angle and not too small outer and inner diameters,

to prevent low frequenc)' vibrations. Moreover, the air

carried along by the jet stream must be removed through

adequate openings at the diffuser circumference.

5. At larger wind tunnels the boundary layer is drawn off

from the jet chamber wall.

By a suitable rearrangement in the only small wind tunnel re-

maining in GSttingen, that of 6OKW at the Max Planck Institute for

Flow Research, the critical spherical number serving as turbulence
vd

mirror, Rek = -7-of a sphere with d - 17.5 cm dia was improved from

Rek - 300,000r to 385,000, and a very low turbulence factor

TF - 405,000/385,000 - 1.05 achieved. The characteristic spherical

numbers of various wind tunnels may be compared by measurements of

spheres of equal diameter and equal surface roughness. In the

GSttinger wind tunnel a smaller sphere of 12 cm dia reaches an

Rek - 393,000.

4
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These critical characteristic spherical numbers at the transi-

, tion from subcritical, laminar detached flow to turbulent attached

flow (Fig. 1)jare calculated from velocity v when pressure coeffi-

cient (p/q = 0) passes through the zero point, measured at the back-

side of the sphere relative to the maximum Re-number 405,000 ob-

tained by Hoerner [4] from towing tests in still air. According to

" more recent tests the ideal value Re k = 4!0,000 for still air. These
Re-numbers of pressure measurements are about 20,000 higher than

' those agreed upon critical Re-numbers of the sphere from resistance

measurements when passing Cw = 0.3 which, according to Platt [5]
' should agree with the Re-numbers calculated at p/q = -0.22.

While the shift in the wind tunnel
a b

- l,_.,----W'x_..... c behind a turbulen .._screen occurs

: .  oo.oooJ

[ ,_:,. k.J'',.,.,.,._,a 17.5 cm sphere, Hoerner found Rek

t

#-

i _ .,,..............._ = 380,000 during tow tests in gusty

.I°. ."........

[ ,-- f air in areas with trees, which is
h ._,"'"' / .- . _ an only slightly lower value forG

/ " " than that in still air. That means

_._,,,.,___.,_/f/,1:'.;g--- c that the large turbulence grounda

effects of the free atmosphere have

only a very small impact on the

Fig. I. Deflnltlon of the critical boundary of a few millimeters thick-
re-number Rek of the sphere separa-
tion zone for the drag number ness. Strictly speaking, only
CW = 0.3 and for pressure measure- measurements in turbulence-free air

ment p/q = O. flow result in correct valueE com-

: Key: a - subcritical parable to free flight. This holds
b - Drag measurement true especially for measurements at
c - Separation zone
d - hypercritical at low Re-numbers since at turbulent
e - (Imminar boundary

layer) air flow the subcritical, laminar
f - (Tu,-bulentboundary condition does not appear at all and

layer) the airfoil coefficients appear very
g - Pressure measurement
h - of pressure
i - coefficient
J - of drag
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: much changed. When the low turbulence condition is reached one can

easily achieve turbulence for the entire air flow by appropriate

measures or one can apply local turbulence inducers on the test

body to demonstrate the extremely changeable scale of turbulence

", effects at low Re-numbers.
"L

, Velocity and turbulence distribution may be made extremely

• homogeneous by inserting fine screens. To be sure the screens

transform a considerable part of the compressor power into heat.

At each measurement location the temperature change of the air flow

(measured at the back of the sphere) must be considered,since

otherwise the temperature increase for each degree results in an

increase of the Re-number by 2,000, and with increasing and de-

creasing velocity hysteresis a deceptively wrong Re k of, for

instance, over 430,000 may appear, especially for small spheres.
I

l

The following condition is here referred to: it is known that

all wind tunnels show troubling resonance oscillations at certain

velocity regions (especially wind tunnels with thin sheetmetal walls

and too small a collecting cone), which increases the turbulence in

: these regions. It is desirable)therefore)that instead of the critical

sphere coefficient, which indicates the exact turbulence condition

only at one certain velocity, the turbulence be ascertained for all /151 I

velocities. Up to now only the measuring method by means of elec-

tric hot=wlre px,obes, in conjunction with an oscilloscope as intro- i

duced by Dryden, has provided progress. This method allows measure-

ment of the distribution of the turbulence force along the entire

0
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, velocity range of a wind tunnel. Low turbulence wind tunnels I

have a 1

turbulence coefficient Tu = _ v = 0.30/00 to 1°/oo.

where u represents the turbulent oscillation velocity, the dash the

temporary mean value formation and v the velocity of the basic air

flow [6]. |'

The connection between spherical and hot-wire measurements de-

rives from the product of the degree of turbulence and Taylor's

parameter

I
Re k = f[C¢;_/v) • (D L)*/s].

D denotes the spherical diameter and L the vortex bail size derived

by means of the two-wire probe. Accordingly, Rek changes onIy with

the 5th root of D, resp. the change of ¢_V is S times more effective

th_n a change of D and L.

| _">. i i--!'_;''O'2;_'| Key: a - Channel III with sieve

" _,'l -__2__..........I....i-- I ! b - Sphere diameter
_._2 .......I- I c - Channel I
-,-- -|---.,c! -iT " d - Channel III

z.... :.,,. ___ __q e - turbulence poor

L

Figure 2. Calibration diagram for determination of turbulence
coefficient Tu from the characteristic spherical number Rek. Based
on comparison measurements and calculated for a vortex slze L - 1 cm.,

Tu - 0 denotes Rek - 411,090 (from R. Seiferth).

7
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Figure 2 shows a calibration diagram by R. Seiferth [7],

which was derived from comparison measurements by means of a hot

wire and a calibration sphere of 22 cm dia. For the small GSttingen

wind tunnel, with an elliptic jet of 730 x 1045 mm, a sphere of

220 mm dia would already result in too large a jet resistance. The

Rek number 385,000 for a sphere of 175 mm dia agrees with a turbu-
lence coefficient of 1%0 for this Gottinger wind tunnel, when

extrapolated to 220 mm according to Fig. 2.

To measure the effectively small forces at low Re-numbers of the

model airplane (10,000 to 200,000) the three component balance must

indicate 1/10 of a gram and the dynamic airspeed indicator 1/100 of

a millimeter pressure differentials. The velocity must also be

capable of very fine regulation between 1 and 10 m/s, i.e., between

0.06 and 6 mm water column. Moreover, to obtain a continuous series

of Re-number measurements in a more accurate way for airfoil mea-

surements at low Re-numbers, e.g. in the desired region of 10,000

to 200,000, for model and bird flight and to reduce the scattering

of data points instead of the usual "Polar measurements with grad-
" theual increase of the angle of attack a at constant velocity,

t'

velocity is gradually increased and decreased with constant a--to i
f

obtain the hysteresis loop. In contras: to polar measurements

this procedure can be designated as index of measurements. An ar-

rangement of tile corresponding c a and cw series of measurement vs.
Re will result in a random number of polars as cross-sections as

shown in Fig. 4.

4. Effect of Turbulence on Spheres and Airfoils

The turbulence effect acting on small airfoils constitutes an

analogy to the known boundary layer processes on spheres, which

present a clear physical graphic comparison, that was first in-

terpreted by Prandtl. For sphers there exists at the leading edge ]

of flow at the stagnation point a positive pressure (+), while a [

_" 8
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negative pressure (-) is directed toward the equator o£ the sphere

by conversion of potential into kinetic energy (Fig. I). At the

backside of the sphere the kinetic energy wouId change back into

pressure ( ˜�withoutfriction loss in a friction-free fluid, i.e. a

fluid without viscosity, so that a second stagnation point would

appear and the resistance became zero. because front and back pres

sures would canceI each other. The boundary layer due to the vis

cosity of the flowing medium is the known reason for all pressure

and friction resistance. There are varying flow effects and resis-

tances, depending upon the laminar or turbulent boundary layer flow.

a. The furthest from the ideal form of the friction free

fluid is the laminar (= subcritical) boundary layer condi-

tion, since the flow is already detached at the equator, be-

cause the laminar boundary layer cannot overcome the pres-

sure increase from (-) to ( �”starts there.

b. At a certain critical velocity, resp. Rek-number, the

boundary layer at the leading edge of the sphere will get

turbulent by itself after a short laminar start, when a

completely smooth sphere is exposed to turbulence-free

incident flow at Re : 410,000. The transition zone now

Iies ahead of the detachment zone; the laminar start will

get shorter with increasing _reIocity. The turbulent

(- hypercritical) boundary layer flow has the curious

quality, by virtue of fine eddies, to transport energy

from the outer flow layer to the one close to the wall,

, which is slowed down by friction. It can therefore partly

overcome the pressure increase at the back side, the flow re-
: attaches itself and in the now much smaller area of

; eddies there is excess pressure and the drag coefficient

cw decreases from 0.48 to about O.g8, that is to 1/6 (Fig.
lb). This increase in the hypercritical flow condition is due

the turbulence effect.

9
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c. The conversion laminar/turbulent may be forced by a

"turbulator" even at low Re-numbers, e.g., by attaching a

wire ring at the incident flow side of the sphere in

front of the detachment zone, which is how Prandtl proved

that it depends only on the turbulent boundary layer. The

same effect results from a rough surface, or from an al-

ready turbulent incident flow. Sonic vibrations (strong

whistle tone) may also reduce Re k, most effectively by

turbulence grids made from rods of adequate thickness.

These three conditions can be observed well at any water pipe.

(a) If one turns the faucet on slowly, the water flow is at first

smooth as glass; the flow is laminar. (b) When opening the faucet

a bit further, the water flo_ suddenly turns turbulent at a certain

critica] velocity. (c) If one holds a needle in the laminar stream,

then the flow is turbulent from that point on.

The conversion laminar/turbulent occurs on airfoils at much /152

lower Re-numbers than on the ¢phere and it occurs on thin, flat

plates already at Re _ 10,000, corresponding to the gliding flight

of large butterflies and small hangar airplane models. At turbulence-

free incident flow the conversion starts at Re - 100,000 for round

- ,0o thickness and reaches full turbulencenosed thick profiles of _ Q

at about Re ; 150.000, which corresponds to the flight of very large

gliders and large birds.

In Fig. 3 the result of a ,:,nd tunnel measurement on an air-

foil with the profile _o0 at a = 30 is presented as an example. In

the subcr;tical conditiou the laminar boundary layer of the upper

surface of the profile detaches itself since it cannot overcome

the locally starting pressure increase (Fig. a).

10
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a b " I ..........._'J At the profile N60 the :

"_'I_-'_ -c / (b) d
, . , .......: W..th increasing suction of the

_'_?_c'-"_ j ' 'Yo/:_./ c. _. .,j flow at the upper su:,face the....-- -. , - - "' _ stagnation point moves towards

"1'::; _{ ' {X 7 e i- s the alrfoil's lower surface.
.... _....... z From the stagnation point on the

"""' '-:">_" - .... "I"_'-_'-_$ airfoilis upper surface receives:.Jo_--._+,"l j/.jt__--,j_,_i__.._ boundary layer flowing towards the

J.?c_--'i'4 _-'_ I -- l- I,
, ,f-_hlA/60-" the larger a centrifugal force

a c '+''""_'_"'J"J (Z - p" v2/r), the smaller the nose
0 _,,"OJ

.', :h ' _---cd.', radius r becomes, causing the

' "., -: " +: boundary layer to become turbulent
, , +g -...-..J,+.,,.-__ytTe-v., I

c ._.,,....... _..,<,.," ' '_:,_ and the point of attachment to

move downstream (Fig. 6). The
Fig. 3. Result of an airfoil
measurement for profile N60 drag coefficient ,"%,decreases
at an angle of attack of 3 up from 0.09 to 0.05, the llft
to a Reynolds number of 150,000.
Dotted line: with prepositloned coefficient ca increases from
turbulence wire Td. 0.35 to 0.65, the llft/drag ratio
Solid line: without turbulence
wire. Ca/C w from _ to 13; the airfoil

now reaches three times the
Key: a - subcritical

b - laminar boundary layer gliding distance.
c - hypercritical
d - turbulent boundary layer
e - without Consequence: An airfoil

f - angle of attack model w_ll attaln optimum
g - Reynolds number
h - critical Re-number performance in acccrdanc e
1 - with wl t h it s size classification

J - with 0.70 turbulence only in the hypercriticalwire

k - turbulent boundary layer condition. These requirements

can always be met: (i) by suitable

11
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choice of profile, or (2) by means of artificial turbulence, e.g.,

by adding a prestressed cable as a turbulator (Fig. c), causing the

boundary layer for profile N60 to become hypercritical already at

Re _ 20,000.

.5

5 The Hysteresis Loop

,_ In the hypercritical condition the air force-measurement shows

hysteresis after separation of the flow in the stall condition with

decreasing _, which broadens very undesirably at a high Re-number

even for thick airfoil profiles, and at low Re-numbers especially at

turbulence-poor flow even for medium thick airfoil profiles. As ex-

plained in chapter 3, the "index measuring method (a = constant,

v = variable)" attains more accurate measurements for low Re-numbers

than the usual "polar measurement (v = constant, a = variable)." To

comprehend the hysteresis correctly with the index measuring method

the flow must be set up hypercritically for large angles of attack,

when reaching the desired highest velocity, by placing a cane in

front of the airfoil leading edge, in case the flow does not become

hypercritical on its own, so that the c -value resp thea max ' "

upper branch of the hysteresis square,appears (CGH in Fig. 4), e.g.,

for the profile N60 according to Fig. 5 for Re _ 160,000 above a = 10.
This curiously different behavior of a profile during the two mea-

suring procedures is caused by the movement of the stagnation point,

whose course, at constant a and decreasing v,is conforming only with

the course for the polar measurement method and with free flight

when "originating from the hypercritical condition." On the free

flight model the flight mechanical interpretation of hysteresis

after separation of the hypercritical flow due to a gust or a calm

is visually observable, with the model pitching down at smaller a,

fiying faster until the flow at the "initial angle o£ attack" and

at higher Re-number reattaches itself hypercritically, thus restoring

the normal glider flight position.

I
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Thin, flat and slightly curved

-f ............. surfaces show in the here measured j:

J,j .-_._"-Z__._tr region Re > 2000 no subcrltical
= _ -- _-_. c-_ j /_( Iv'_<..,\ condition and no hysteresis, which Ii

--_,_._/._ _ _.. ......: is also true for medium thickness
1 F_._j_, ' /ll_ ! _,r,' ._: #!-_'- . " I

I_c_ _ i£_i_ _ airfoils, e.g. ,N60 when a pre-

-, _'_ _- stressed turbulence string secures

' - _'_"_ the hypercritical condition. J_

! "e_X__I_'-_ - _ /r 6 The Leadin£ String as J" "
___,;.- Turbulator

Fig. 4. Three-dlmenslonal In Fig. 5 the envelope curve j:
coordinate sy3tem Ca vs. of the separation points is identical

_ and Re for presentation
the connection between with the steeply increasing Ca max }

the characteristics llne which, emanating for N60 from

measurement method I(longitudinal section) and Rek = 63,000, after a transition
the polar measurement method region at II0,000 with a = 17, /15____33
(cross-sectlon) on profile
N60 for _ = l0 o. reaches a ca max of 1.3. The

ooundary layer at the airfoil's
Key: a - Separation

b - Hysteresis loop upper surface is now fully turbulent
c - startup due to increasing "foll leading
d - subcritlcal
e - Transition edge turbulence" (centrifugal
f - hypercritical acceleration d"e to movement of

the stagnation point) and adequate drag effect of the outer flow, i.e.,

adequate transport of energy in the boundary layer. The effective

region of the turbulence effect ends here with the achievement of

full turbulence, including the obtainable advantage through means

of artificial turbulence through a tripping ledge, leading string,

surface roughness, turbulence edge, etc. The limits of effectiveness

of a turbulator at low Re-numbers remain unknown since even insect

wings of only lmm length, surrounded by fine hairs, are probably

still operating in the sense of the turbulence effect in the,

for them, almust mushy fluid "air."

13
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_J On flight model airfoils

_ the obtainable advantage of a

turbulator is, e.g., that with
U c

a leading wire, the hypercritical

_o condition may be achieved already

_3 at a considerably lower Re-number.

' For profile N60 the separation
-, q8

line is advanced approximately

equidistant by a Re-number

_ range of 40,000, from 63,000 to

_s 20,000 (for a 20% thick airfoil
even from 105,000 to 200,000).

_ The flow separates itself from

_ profile N60 for Re - 20,000

_ at _ = 7, but at 40,000 a ca

of 0.9 with a 9° angle may be

_t achieved and a c of i.i with
a

o 12 ° at 60,000, instead of at

-_s 90,000. The turbulence string

(fishing line or rubber band)
-0_

_ must be at least 0.4 mm thick,

"_ is pulled tight at a certain
f

._ ._ .__._, spot ahead of the stagnation
0 _ _ _ _ I_ &_O_ I_ _0_

point and is then fastened with

Fig. 5. Results of measurements about 25 cm support distance.

on air foll N60: Plot ca vs. In Fig. 3c, the arrangement
Re _n is the measured angle of
attack (without calculated of this string of 0.7 mm dia

, correction). For comparison the in front of a model with 90
turbulence effect for the four

angles of attack already active mm profile depth is shown in

at Re - 20,000 due to the percentages of t. The gain
turbulence string (Td fastened
to the model) is shown, obtained by means of this

Key: a - Transition turbulence string (Td) is drawn

b - Separation lines as a dashed llne.
c - upper hysteresis line
d - rlse

e - starting llne
f - lower hysteresis line
g - with

14
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For Re = 50,000, for instance,

_----_r _ I I t l IvI:°. ca is greater by 38_, Cwm is
/ ,,..... t ,IJ_

-_ "- _-- o smaller by 331 and the glide
__-_-_I-I_- coefficient is improved from

, .__-I rl 5 to i0. In comparative

_-r-_ , ,; a measurements with other

' _T b !_'_2__'''_q'''_''" turbulators the leading
i u t-_ ' J _-Y y .-

. _::_.°.!,.....:,I_ string proved to be most

/./__-[-:_.::[_:F___Jo effective on a normal air-
-/_" [ _ :_ ]....Li_Ll..o loll in the region of

Prof//_0625 t--_--T-T-I....---,,-'_ Re = 30,000 to i00,000;
_,_,-;_-_e L |_-4-I--4--_ below 30,000 a tripping

J--_-_ [--,VJ__.:._.--_._ edge of i mm above the

_-U- o profile's leading edge

_'. - IiIii !illi I : i "'_ was more advantageous.
, _ _ • "_0

• ! I . , For tests of the ele-

-Ili:-:l- the thickairfoil
0 2 _ 6 8 70I2I_

Q/C,--.- 625 was chosen, which is

very turbulence-sensitive

due to its large nose radius

of 3.4_. In Fig. 6 the

Fig. 6. Results of measurements Ca/C w values of the windto Judge the effect of elevation
of the turbulence wire on the tunnel measurements on

thick, round-nosed profile 625. the model with aspect ratio

Key: a - wire dia 5 are presented for five

b - chord different angles of attack
c - Turning axis
d - Aspect ratio and three different Re-numbers,

e - thickness as function of the elevation

of the turbulence wire.
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The wire of 0.5 mm dia is not attached to the model, so that

its resistance must be considerea in the application. _or evalua-

tion of the effect it is noted that the critical reversal for pro-

file 625 without turbulence wire starts at Re _ 105,000 ,rid reaches

full turbulence at 155,000; but it starts already at 20,000 with a

turbulence wire and at 70,000 operates completely hypercritical.

At a = 0 and Re * 84,000 the wire yields an extraordinary im-

provement of the glide coefficient from 2 to 13 and this in a large

vertical effective range Y from 0 to 20% t above the axis of rota-

tion. For Re , 42,000 the wire produces a maximum value of 9 only

at a certain elevation of Y = 5%.

With increasing angle of attack the vertical tolerance field

gets smaller and moves downward, as the Ca/C w point for 42,000
shows. This is explained by concurrence with the movement of the

stagnation point downward around the airfoil nose (Fig. 7).

Optimal affect should be obtained for the model up to the

stalled flight condition at 18 °, if the wire were turned by a swivel

device by about the same angle downward around the t/4 turning point.

At 18 ° the effect of Re = 42,000 remains only small,,but up to complete

characteristic turbulence at Re z 155,000 still quite favorable.

From further tests on profile 625 it was found that with reduction

of the horizontal distance to about 10% a wire of 1 mm dia, attached

solidly at an elevation of 8%, produced a similar favorable effect.

A wire of only 0.2 mm dia became only effective when it was oscil-

lated, which in practice corresponds to a thickening. /154
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7. Airfoil Nose and Movement of the Stagnation Point [

The boundary layer flow at rounded bodies is more prone to [
turbulence and more dependent on the Re-number than on rounded bodies

with edges on the incident flcw side. Such tripping ledges provide I
i

even for airfoils at Re < 30,O00, a useful turbulence effect when

used appropriately in the region of low Re-numbers--as on a sphere--

when too large they act as separating edge on the airfoil!

At the leading edge of an airfoil there are, besides the premise

of turbulence-free incident flow, the following parameters of rele-

vance: the motion of the stagnation point, the form of the leading

edge (nose radius r, intake angle _ of the airfoil center line, the

increase in thickness along the airfoil center line), surface rough-

ness, the angle of attack a and the Re-number.

At the well known test of the rotating cylinder in a parallel

flow the frontal stagnation point moves against the circulation,

the rear one with the circulation. At u/v = 4 both points coincide

[2], the body is completely sucked into the low pressure regime.

At the airfoil the lift is proportional to the circulation, so that

with increased lift even here the stagnation point is moving counter

to the circulation around the profile nose towards the airfoil

underside. In Fig. 7 this stagnation point movement is presented

on two profiles [1] from the G_ttingen pressure measurements. Al-

though this stagnation point movement along the pressure side of

the wing amounts to only a few hundredths of the profile depth, it

has considerable influence on the turbulence of the motion side

boundary layer, which is the greater, the smaller the nose radius

is.

I?

t
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For t_e pointed nose profile 389 (Fig. 7) a pressure drop ex-

ists at a = 14.6" from the stagnation point to the pressure mini-

mum, which is only about 4 mm away, equalling 4.7 times the

velocity pressure, so that the velocity at the free border of the

boundary layer is accelerated from 0 to 64 m/s in 1/8000 second.

This acceleration of 512,000 m/s 2 is greater than that of a bullet.

Fur the thick profile 282 at a = 14.5 velocity rises from the stag-

nation point to 34 m/s along a distance of 7 mm in 1/2000 s. The

acceleration here is only 87,000 m/s z, which is less than 1/6 of

that for the thin profile. The pressure minimum, however, lies

further above the profile nose where from the stagnation point on

v = 55 m/s is reached after 38 mm distance, while for the thin

profile an enormous pressure increase starts at the suction point

close to the front edge where the velocity already starts to decrease.

]'he larger acceleration of the boundary layer at the pointed

nose profile explains why the laminar/turbulant transition for it

starts at a low Re-number--as on profile N60 at about 63,000--while

for the thick round-nosed profile 625 the transition only occurs at

Re = 105,000! This leads to the conclusion that the boundary layer

should flow around the knifelike leading edge of a flat plate (nose

radius r > O) with a theoretically infinitely large velocity since

the mass point , which moves with velocity v from the radius r
2

on a curved trajectory is exposed to a centrifugal force Z * vJ r "

r Instead the boundary layer detaches itself from the leading edge and

forms a stationary transition vortex at whose backside the airflow
becomes turbulent and r attaches itself. This transition vortex

propagates with increasing angle of attack, with the upper boundary

layer functioning somewhat like a curved, fluid profile side. Once /156_

the transition point _as reached the rear edge involute, vortices

are formed in the stationary transition vortex which, increase

18
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' rapidly and then flow away. The flow then detaches itself after

strong incident shocks at angle of attack of S-lO. The edge of

turbulence now becomes the detachment edge. For as with all pro-

files thc separation proceeds from the rear edge to the leading

edge. For the functional profile the events are the same, only

they are distributed over a wider angle of attack range due to the

curvature of the nose and camber of the wail.

Flat plates and thin symmetrical profiles are not pressure

point sensitive from -6° to +6°; the pressure point lies at t/4

and for larger angles of attack it moves towards the rear edge.

Prior to "stalling" it acts in the sense of automatic longitudinal

........;='_-- _ stabilization if one trims the _

- - center of gravity to 28_ of the

p/q-:t---Tl_ ' -.l..<_._..'i plate thickness with a postcal'd
2 .,p i/_, '_ _QO according to the example of the

"_ -_=-!....*1_-ffr'-_'--_$'_i/"°''jUJ' "flying board" by Lanchester [8].

_-I?_i( 2,s._'__] Flat plates reach only a c of
... _-. 5A:/ ,_" . . a,,, =,.,a 6 " - _16 ' ¢" 0 5 for Re = 20,000 and 0.6

c_, _20o_ 2' at I_e _. 168,000 and 0.7 at

, , ,---,12,,_, t 200,.,, ./<:? '. Re = 420,000; flat plates do

.... tO...... --. -" act alreay hypercritical at
$

]'_6 ° _1__ " Re - 10,000, the alp flow detaches-a,t_ itself already at a small angle

I ! I\-1; '`""; a:t o an .
--) -,_-i\_7-_,_--_,_.u ° )/ I only those small values of ca

'50 I "8 Description of Airfoil Tests

.... - _

Fig. 7. Movement of the stag- The results of the three

nation point and pressure component measurements on profiles
distribution for a profile with
a pointed nose and one with a
round nose.
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N60, 417a and 417b, are presented in diagrams 8-14 by plotting c
a

versus Cw_, _ and Cm0.25 The indices _ indicate, that the drag

measured on rectangular airfoils of aspect ratio A = 450:90 = 5,

Cwm , was transformed into an infinite wing aspect ratio after
treating the finite flow of the wind tunnel with the Betz formulas--

according to Prandtl's airfoil theory--taking into consideration the
\

transition from a rectangular to an elliptical wing. The coefficient

Cw_ represents the remaining profile drag after deduction of the

induced drag.

The NACA-profile N60 is shown in Fig. 8 by test values for

8 different Re-numbers from 21,000 to 168,000. In addition, the

NACA test data at Re eff = 8"106 is shown for comparison. In the

subcritical region <65,000 the lift is small and the drag large with

the moment coefficient Cm0.25 (referred to the pressure axis at

0.25 t) very variable. The curves for Re - 84,000 are still in the

transition region to the hypercritical boundary layer flow. At

105,000 with full turbulent boundary layer c = 1.Z5 is reached anda
the flow separates only at a = 9.5*. The flow cannot be more than

fully turbulent so that the drag effect of the outer flow alone can

affect only a small, but oonstant_ improvement of the flow corres-

ponding to the energy content increasing with the Re-number. The

polar does not separate any longer in a sharp point, but rather

after a soft transition. The moment line c shows the cus-
m0.25

tomary S-curve and hypercritically an average value of 0.08.

9. The Cambered Plate 417a _f/t - 0.0.58)

In contrast to profile N60 the influence of the Re-number on

thin cambered plates is very small; the polar diagrams of R = 42,000

and 168,000 in Fig. 9 show only small differences. The G_ttingen

polar [1], shownhere for comparison as tested at Re = 420,000,

reaches an only slightly higher maximum lift, as is true of profile

21
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417 which is similar to the cross-section of a bird wing. For a

camber of 5.8% this thin plate generates a large lift already at 0.

For good gliding qualities a model requires a high lift coef-

ficient c _ 1 and low airfoil drag in this region. Both apply to• a

the cambered plate. For Re = 42,000 the best glide coefficient of

a glider model 417a for an aspect ratio A = 10 is about 14 accerding

_ to Fig. 16. Moreover,the airfoil (Fig. 9) shows_after passing the
t

maximum liftpno sudden decrease to a subcritical value as for N60,

, but only a small decrease even for very large angles of attack. The

large drag at c = 0 is not undesirable as reduction of the drivinga
velocity. On the other hand, the large center line camber of 5.8_

causes larger stagnation point movement, as seen from the moment

line. This means that a larger control surface is required for

lougitudinal stability, while the flat plate is inherently stable

in flight when the Center of gravity is positioned correctly.

The advantage of th,n cambered plates in the Re-number region

up to 100,000 is based on three reasons:

1. The advantageous cooperation of the tangential incident

flow at the leading edge at large angles of attack with

the turbulence effect of the small nose radius;

2. The strongly concave underside, which shares significantly

in lift generation; and

3. The comparatively small camber of the airfoil's top side,

causing the flow to remain largely attached.

The motions of the stagnation point controls events even here

in combination with the frontal turbulence. In contrast to profile

N60, where after detachment of the flow the boundary layer at the

front of the profile (nose) is laminar, i.e., subcritical, the

leading edge maintains the flow here continuously turbulent. For
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: large negative angles o£ attack the flow at the underside separates.

At -5 ° it attaches itself partly to a transition vortex reaching up

to the leading edge. At an angle of attack of about -3 ° the transi-

tion vortex shrinks beneath the leading _dge, reducing the drag and

making the pressure distribution more complete. Only now can the

stagnation point move underneath the leading edge, making the transi-

tion vortex disappear and the upper flow become turbulent. With

increasing angle of attack the increase in lift d Ca/d_ ® results in
a high value of 2.77_, which even surpasses the increase in lift

of 2_ for a flat plate. For the model airplane this does mean

"gust sensitivity," however.

For practical applications it is, of course, recommended, to

streamline the airfoil section, i.e., to shape the wing rear edge

like a knife edge in place of the uniform thickness of the metal

plate in the wind tunnel model 417a.

10. The Cambered Plate 417b (f/t = 0.087)

For small light hangar flight models whose wings are formed by

a cambered film skin supported by thin aluminum wires and which fly

at Re < 20,000, the camber of plate 417a proved to be too small.

With a camber of about 8 to 9_ of the wing depth t much better

results were obtained. Due to this observation a more curved metal

plate with the parameters f/t = 0.087 at 0.4 t and d/t = 0.035 was

tested in the wind tunnel. Results were surprising.

1. While plate 417a with 2.99 less camber proved to be tur- /157

bulence-insensitive in the tested Re-region, with the

plotting of ca ana cw vs. Re resulting in almost hori-
zontal lines, the more cambered plate 417b was turbulence

insensitive only at Re > 100,00_ (Fig. 10).

The c a,. lines show a definite minimum at Re • 42,000, which

up to now was not observed at any airfoil. While for all
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F_g. I0 Test results of the 8.7 _ cambered plate 417 b ca vs. Re
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standard air foil profil-s the hypercritical flight condi-

tion on models is only dependen: on the upper boundary

layer, which is resp. dependent on the frontal turbulence,

(the influence of the bottomsid, flow--whether laminar or

turbulent--is very small), the picture is quite different

for the more curved plate due to inhibition of the motion

of the stagnation point. Because of the extremei; large

incident angle _ = 31" (see Fig. 13) a statxonary transi-

tion vortex is effective in the Re-region around 42,000 up

to the separation angle of attack of a = 21 ° underneath

the wing leading edge, ,'hose suction pressure does not

permit the stagnation point to advance towards the bottom

side, so that the upper fJo'_ is subcriticall/ detached, or

remains in the semiturbulent transitory conditions while
the bottomside flow is at,ached behind the transition

vortex. In this way the air mass, which is directed to-

wards the bottom at the underside, still generates lift

at Re = 42,000, which is only a little less than for 417a,
• = 6* double thebut with considerable drag, e g., at am

amount (Cwm = 0.13 at ca = 0.65).

3. With increasing Re-numbers the top side flow only reaches
fully hypercritical condition for small angles of attack,

i.e., small stagnation point motion as for N60, only for

higher " 00,.e-numbers, e.g., for at Re = 140,000. To the

right of this rising dashed and dotted line in Fig. 10 the

Ca-values remain hypercritical and constant in agreement

with the twin-lines of r:ig, 11 where,from 7* on at 100,000

to 13" at o3,000_small Cw-jumps _ith hysteresis indicate
a stepwise change of the transition vortex at the bottom

side; these events are visible in Fig. 10, above c a = u.9
between 03,000 and 105,000, as incidence zone (dashed and

dotted triangle).

4. Beyond this region, for larger angles of attack, resp. Re-

numbers, the stagnation point has moved so far towards the
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bottomside, that the upper airfoil flow_in starting to be-

, come turbulent, helps to control the following events. The

simultaneous dependence of top and bottom side flow creates

a situation where for 18 ° to 21 5 ° from R = 50,000 to _
• ' e

105,000, _hree flow conditions are possible for every de-

tachment angle of attack, which in Figs. i0 and ii are

defined Dy three lines as "hypercritical detachment,"

"intermediate condition " and "flow detached."

5. The characteristic decrease of the cw-lines at Re = 14,000
to 42,000 is to be understood in such a way that at the

beginning of the "creeping-attached flow" the transition

vortex is not yet developed, that its turbulent energy ab-

sorption then increases rapidly and at R e _ 42,000 reaches

maximum effectiveness in relatioh to the subcritical top :

side flow.

6. The hysteresis loops in Figs• i0 and Ii show sharply delin-

eated detachment shifts only when testing with decreasing

Re-number, e.g., in Fig. ll,at Re = 48,000 and 18o a C a-
shift from 1.5 to 1.0. In contrast to this and to N60

(Fig. 5) attachment of the top side flow occurs with in-

creasing Re-number slowly along a Re-number range, e.g.,

for 18 ° from Re = 48,000 to 98,000, as is also shown by the

Cw-lines in Fig. ii.

7. The graphing of the torque number Cm0.2 S shows an extra-

ordinary high value of 0.2 in Fig. 12 for the standard

flight regimen at 3° to 12 ° values for _. Its comparison

and practical significance will be discussed in paragraph 9. i_

8. To summarize: if one compares the lift generation at the

cambered plate 417b and at profile N60 by means of Figs. ]0

and 5, a similarity of profiles of the Ca-lines " : only dis-

cernable in the lower part of the figures. There the ca-

lines increase from left to right.

2S
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, ;_ With increasing Re-number and negative pressure at the upper

_ side 417b reaches a constant positive Ca-Value at -5 ° and

Re = 170,000 At larger a aconstanthypercritical value is already

:: reached at a lower Re-number, so that the dashed and dotted curve of

: these values rises from right to left. This represents the limit of

> influence of the bottom side flow: to the right the Ca-lines run

horizontally, indicating the full effect of the upper side fl_.

While for N60 in Figure S this limit of influence of the bottom side

' flow at ca = 0.5 and Re k = 63,000, withthebeginninghysteresis as in-

cident llne, moves again towards the right, forming a connecting line /158

between the hysteresis quadrangles, this line ends at 417b above

ca = 0.9 in a cluster of upwards curving "attachment lines" for

a = 12 ° to 21 ° . With the upper_ hypercritical, Ca-lines and the

vertical line of detachment they form an only 3-sided hysteresis

loop. The "startup" of flow is recognized only at 7° to 9.5 ° . At

9.5 ° and 84,000 the hysteresis in the starting condition is only a

vertical line while the lift shifts from 0.95 to 1.21 and again

discontinues at a small Re-number change. It is notable that at

this discontinuation a Ca-decrease of 21% with a Cw-increase of

only 5% is shown, as is apparent in Figure ii. The Cw-Changes

during detachment and attachment increase rapidly until the flow at

23 ° is entirely detached, even at higher Re-number without _w-shift.

The high hypercritical Camax-Values at low Re-number may be

evaluated as especially characteristic turbulence effects for pro-

file 417b, since for a decreasing Re-number the flow separates only

at the low Re-number of 50,000 with 18°,.at• the very high c a of 1.5,

with the stagnation point at the airfoil leading edge shifting up-

ward. With the turbulator put in the lead the hypercritical condi-

tion may be restored immediately. This condition distinctly explains

the creation of hysteresis through motion of the stagnation point in

the turbulence-poor airflow, i.e., in agreement with the process on

: the free flight airfoil model.

9. In the polar diagram of Fig. 13 the test results of profile 417b

are arranged converted into an infinite wing aspect ratio. According

to the previous explicit interpretation the extraordinary shifts in
26
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• the range of Re = 63,000 and 84 000 are understandable The plotting

,_ of c a vs. a_ shows for c a = 0 - 0.7 a corresponding sudden lift in-
crease of 5_, for Re _ 105,000 even an exceptionai 7_! The moment

' lines cm0.25 show large increases of the moment of nose-heaviness

up to ca = 0.7 for all Re-numbers,

which means an extremely gust-

; sensitive flight of the model at

' the concurrent strong lift change

_ ,L_ .... _ _ ._--L-_z, in this region. From ca = 0.7 to

' of ca = i at which a glider model

m LI generally flies, the torque remains

_ _<_o_,,_ lJ/ i | I " 0.19.
_ :511 i_ ! -l- somewhat constant at Cm0.2 5

......L--L In this case double the torque of

_ the less cambered plate 417a, with

q32 Cm a - 0.I, mus. be compensated for

in this ca range.
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The c values, which decrease with increasing Re-numbers, showa max
that here the turbulence has become excessive. Only below Re = 63,000

is a turbulence effect assured for profile 417b. Beyond this the

artificially strongly broadened upper boundary layer leads to earlier

separation, which occurs speedily and without hysteresis, the re-

attachment occuring then as speedily. The rise in the llft line

dc/de amo,,nts to about 57 at a Re-number of 14,000 from ca = 0 to

abcut 1.3. The increase of the torque coefficient is, up to ca = 0.7,
the same as in Fig. 13. Beyond this the lines run gradually without

sudden shifts, so that an airfoil model with a wire attached in front

of it has much better flight qualities and is less gust-sensitive than

without such a turbulator. Perhaps two wires should be used to keep

the upper and lower boundary layers turbulent at the same time over the

entire angle of attack range.

For a streamlined airfoil

profile configuration with parameters

_ . 2, ____ (in % of t) r = 1.5, f = 8.4,

_.:.:,_ .--2_...._ d = 6.2, slightly more favorable

• t "llll[,_'_,,'"i/! ._ '_ : .... , values may be expected. The
_,, .... L .. Z l ' .., '
_ - ,/ _ , m ' _ T '

\ /'I I i ' i l . index numbers present the rear-

| !, ! / ward position of the camber andI
0,21........1.....:_!.-'/,__ , ._ thickness. For this a string

1 ' , eiJ, .dTba,o.... _--:'---z--, - _ _ ___ of at least 0.5 mm dia should
< I 1 :
_ J< !I : _ be applied about 8% in front of

q_ ..........,.-L_-_\b.--tT---7....;_>_...-___.:-

: ' _ ! ' the leading edge of the profile

, o-----_---i-___-__---!--- at the level of the pressure

_02 _ .----7 '( "° -_ ' , '

q ...."<'_ ' -".._'_-------i_i--" ...-'_., : .... ReL] a turbulator, r and f should be
kept smaller for optimal effect

. in the region of Re = 30,000 to

80,000, e.g., r = 0.7 and f _ 7.

Fig. 12. Test results for plate

417b with 8.7% camber: ii. Comparison of Test Results.
Cm0.2 5 vs. Pe. '......

By drawing the polar diagrams
28
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(Fig. 15) of the 3 airfoil profiles N60, 417a and 417b in superposition,

one gains an overview of the order of magnitude of various indices of

the profiles. The uncorrected test values of the rectangular flight

models of the aspect ration A = b/t = 5 are presented, as the index

m at Cwm indicates. The 5 airfoils are again drawn at the right, 417b
., being tested in the turbulent wake of a wire of 4 mm dia, which is

applied 400 mm in front of the model at the nozzle.
J

Re = 21,000. Airfoil profile N60 is subcritically very bad and even

with a turbulence string it reaches only a c a of 0.7. 1he airfoil
417b with 8.7% camber reaches double this c value of 1.5 in a turbu-a
lent airflow, but it is inferior to the plate with S.8% camber due

to its very large drag. As can be read at the intersection of the

tangential pole line at Cwm = 0.1, 417a reaches the best glide ratio

Ca/C w = 10.5. while 417b only reaches 6.2. bloreover, 417 is almost
insensitive to a change of the Re-number, as the barely more efficient

polar at Re = 168,000 demonstrates impressively. At 417a a test with

the string fastened in front of the airfoil or in turbulent airflow

resulted in no improvement,likeon airfoil 417b.

Re = 63,000. For airfoil profile N60 the transition from subcritical

to hypercritical condition begins here. With Td it has at c a = 1 the
same values for 417a as for 417b.

Re = 84,000. The polar plots for 417a and N60 are identical to

c a = 1 where N60 without Td separates at 10.4°; with Td it reaches

c a = 1.2 at 13°C. The cambered plates do not detach with large c a

decreases but with a gentle transition: 417a at 13 ° for ca x 1.07,

417b only at 15 ° for c a _ 1.42. For small angles of attack 417b has,
however, a lower diving speed than the others due to its laree drag.

Re = 126,000. At this Re-number the limit of the effective range of

the turbulence effect for profile N60 is already exceeded, since it /161

not only reaches a higher c a max = 1.3 without Td, against 1.2 with
Td, but has also a lower drag.
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Above this Re-number range the wire applied in front of the foil

, even results in a somewhat larger drag and a lower lift maximum. Con-

sequently, all airfoil measurements where a V-wire was mounted hori-

zontally in front of the airfoil model for drag measurement (to save

a second "45_-wlre '')are handicapped with thls error. It has been

" part of the general expended efforts since 1940, to make the wind

tunnels as turbulence-free as possible, in order to get exactly uni-

form results for tests at different wind tunnels on identical air-

foils, at identical Re-numbers; in that sense it is appropriate to

provide model support that is as free as possible of outside influ-

ences. Model flight practice asks basically for two flight performance

characteristics:

i. The model should reach a good distance,should glide the

longest possible dlstance for the available glide altitude

It, i.e., have a gooa glide ratio.

e = _ = _ = c--Ew= cy = tan q.
B A ca c x

Glider models reach about l:18 = 0.056 as the best glide

ratio, high performance typ_ gliders 1:40 = 0.025. To ob-

tain integral numbers instead of the inconvenient fractions

one uses the reciprocal of the _lide ratio Ca/Cw, which is _
designated as glide coefficient. In the polar diagram Fig.

16 the tangential polar line results in the optimum glide

coefficient of the specific profile and the specific aspect

, ratio.

2. More important than the glide distance f_r the model flight

is the smallest possible rate of descent v,,, which has a

minimum for each airfoil at an angle of attack approximately

1 to 2° larger than the one belonging to (c_/Cw) max, i.e.,
at that value a where tile lift coefficient ( 3,_2_ reaches a _

Ca__WJ i
maximum. The rate of sink
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'_ '-I..... ,Y -C---_ ..... v = G 2 1

I. '-1 _.--_L/-.. t-'_-
' o.,-II ,//I__ ./5/_, le'_'J.,, is only dependept on this lift'_,' I /.',_ I ( I L'-./ I /_.fi ,J

a,' ]-_/-';'_7/" T.... F-- coefficient, in addition to thel,...f//t'l',*.,j'' I
.,,/_._./.'-_,_J_-./O I I [._ wing load G/F and air density _.

"_' & .7_1// [a ge_2_o For approximate determination of

,,'/.¢:.,,o.e_,.).!_.._ , ., ., _ : r_,_;a values c , c w and a belonging to

_ ,/u' ._......,.....-...._,"/_,,'_ .....) ,.,-¢,, o (c_/c_)max, the design drawn in
_c, _. Fig. 16 according to Klemperer is

sufficient.

An absolute comparison is
Fig. 16. Polar diagram for flight
models with profile 417a for eight given only by the airfoil drag
different airfoil aspect ratios, c converted for the infinite !
Approximate determination of opti- w_
mum lift coefficients c2/c. 2_ ac- aspect ratio, or by the airfoil

cording to Klemper. ApproXimate iidetermination of optimum glide glide coefficient Ca/ew® and by t
vaiueStialpol]C _C_ine.through the tangen- the lift coefficient c_/c 2w®.

For the previously discussed

airfoils N60, 417a and 417b--

with and without turbulator--

Key: a - Flight model with the curve of the airfoil lift
b - (for fuselage and

tail assembly) coefficient for five different J'

c - tangential Re-numbers is plotted in Fig :d - sectioning polar • '
ray 17, by adding the values for

the flat plate and for the 9_
I
i
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J

thick symmetrical profile 409.

_ _ i _,_,o I Since the cube of ca appears

efficiency comparison highlights I!

the optimum values for pure air- I

foils clearly. ,

Re = 14,000 and 21,000. At

14,000 only measurements for

airfoil 417b are available,

°..... With Td 417b is by far better
_V

than without it. It is sur-

_ _ prising, however, that it is
not more effective at 21,000

_ and that it is far surpassed

by 417a, which could already

be gathered from Fig. 15.

Re = 42,000. The t urbu lenc •

e f f e c t i s particularly

Fig, 17, The comparison of profile effective for airfoil 417b.

lift coefficients and profile glide But even here it s llft
coefficients (in 3 different Re-
number steps) makes possible the coefficient is inferior to
clearest evaluation of thc airfcil

airfoil _17a.profile performance as a function
of the Re-number. TD means testing
in the turbulent wake of a wire of
4 m/m dia, Td means that a turbulence Re = 84,000. Here the difference
wire of 0.7 m/m dia is fastened to between 417b with and without

the model. Td Is only small, both are

Key: a - without superior to all others in the
b - flat plate region of 63,00 0 to
c - with
d - hypercritical i00,000. If, during a lull or
e - subcritical gust, the airflow separates for

33a
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"airfoil 417b without turbulence string," then the lift and glide coef-

ficient_ drop severely, which does not occur with a turbulence string.

This clearly explains that for comparison flights with a turbulence

string the practically documented improvement of starts and flight

", qualities (especially gust stability) is valid. In contrast to this /_1_1
-. the flat plate and the symmetrical airfoil profile 409 are bad lift

, producers. Profile 409 works even in turbulent airflow only margin-

ally better.

Re 2 168,000. As already visible from Fig. 15, the airfoil N60 without

turbulator is greatly superior to the same airfoil with Td, as well

as to airfoil 417a. It is surprising, however, that the heavily cam-

bered plate 417b, with and without Td, is only slightly inferior to

airfoil N60. At this comparatively high Re-number for model flight

the 12_ thick airfoil N60 is preferaole due to its greater stability

and s_aller motion of the stagnation point.

12. Aicfoil profile selection according to Re-numbers. The airfoil

selection is made according to the diagrams 1) in such a manner, that

a blower vane or a model airfoil should safely work hypercritically

and that a sufficiently great hypercritical Re-number region remains

up to the subcritical flow separation. In the Re-region <200,000 the

following is generally valid:

1. The thicker a profile, the higher is the Re-number at which

the transition to turbulence occurs, or: the smaller the

1)For profile selection and technical application test results are
shown in 28 numerical tables and 20 diagrams for the Re range 21,000-
168,000, on S airfoil profiles (which illustrate the problem through
extreme contrasts in the initially mentioned book [18]. The tests
give exact information from which Re-number on it is beneficial to
shape a blower vane.
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!
Re-number of the flight model or of the blower vane, the

thinner the profile must be and the smaller the nose radius.

_ 2. Only in the subcritical region and within the transition

zone does artificial turbulence improve the effectiveness

of the profile, since the start of the transition is moved

towards the lower Re-numbers.

3. While thin, slightly cambered plates (f < 6.5_, r < 1_)

work bett_r without turbulators, turbulence generation pro-

duces remarkable improvement for largercambered airfoils.

4. At Re = 150,000 even the heavy profiles work hypercritically

so that it presents the limits of the turbulence effect for

them as weli while for standard profiles,of medium thickness

and camber_Re is about 100,000.

S. Symmetrical profiles are bad lift generators, with or without

turbulator (as is the flat plate). Thick symmetrical pro-

files are only advantageous at very high Re-numbers.

13. Comparison: Large aircraft and flight model. From airfoil tests

at low Re-numbers the following surprising contrasts are obtained:

I. While on a large airplane the airflow around the wings is

always hypercritical_since the boundary layer becomes tur-

: bulent after a laminar start, for airflow around the model

i airfoil a bad subcritical flight condition is possible be-
cause of a stable laminarity of the boundary layer in the

t

Re-number range <lO0,000,

2. For the large airplane it is desirable that the boundary

layer remain laminar as long as possible to utilize the

35
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smaller laminar friction as far as possible and to delay the iturbulent separation due to turbulent friction loss up to the

largest possible angle of attack; for the airplane model, i

however, the earliest possible turbulencc is desirable to

attain a large hypercritical Re-number range, i

t
3

3. For the large glider one selects, therefore, a round-nosed, i

thick airfoil and for the small flight model a sharp-nosed, !

thin airfoil. For the high speed aircraft one chooses a tlaminar profile with very little camber of the profile
|

center line, but large rearward position on the location of
|

greatest profile thickness, for the flight model a turbulence i

profile with great camber at the profile center line and

small camber at the rearward position.

4. The aircraft wing should be as smooth as possible fer lew

surface friction, especially at the leading edge. At the

leading edge of the flight model a certain roughness and

even a tripping edge may be advantageous. For the flight

model the surface friction is of lesser importance.

i
5. All means of artificial turbulence, like surface roughness,

a sharp leading edge, a tripping edge at th_ profile nose

and especially turbulence strings in front of the leading

edge, are favorable for the flight model below the hyper-

critical fully turbulent Re-number range; they are alwayo un-

favorable for ._rge aircraft.

O. For the large aircraft the e11iptically sweptback circum-

ference of the wing and the propeller is advantageous for

production of low induced drag; for the flight model and the

propeller of the flight model the more rectangalar circumfer-

ence at equal aspect ratio is more likel)' to obtain as

hypercritical an Re-number range as possible, resp. to

3b
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avoid subcritical operation of the wing tips. For a twisted

rectangular wing of the flight model elliptic lift distri-

bution may also be obtained.

7. While present gliders achieve a glide coefiicient of 25 to

40, glider models only reach coefficients of lO to 18 hyper-

critically, corresponding to the lower Re-number.

14. Examples of Application.

Glider models: the Federation Aeronautique Internationale (FAI)

has prescribed a minimum surface lo_ding of 12 g/dm 2 for model flight

in the presently valid contest directives, the wing area is under- /163

stood to be the vertical projection of the wing and the elevator

control surface. The inclusion of the elevators is justified since

for flight models_in contrast to large aircraft, they are mostly set

up to complement the lift. For the A 2-class a total area of 32 to

34 dm 2 and 410 g total weight is specified. To facilitate the prac-

tical application of the airfoil measurements for the _,odel flyer,

Fig. 18 presents the construction data for the profile test N60 for

14 glider model sizes in the hypercritical region for Re - 84,000

and 105,000 and 7 different aspect ratios, for which the wing with a

wing load of 12 g/dm 2 obtains the lowest sink rate, i.e., flies with w

optimum lift. The detrimental drag of fuselage plus control surfaces

is considered through Cws a 0.01. For each model 9 sizes are pre-

sented. Intermediate values may be extrapolated.

Since the choice of size and load of the controls is arbitrary

that must be taken into consideration through reduction of the test

data by calculation. Velocities v x and Vy change as the :,quare roe"
of the ratio of partial surface load of the wing to the required total

load of 1.2 gg/m 2. From Fig. 19 the variable data for "Model Re

- 105,000 and A - 10" may be obtained for the various control surface

sizes and loads.
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, Bird flight: Since the flight

model, because of its size and

: its Re-number, is more similar to
a

I A_. b _'_'_"_'" .... i birds than large aircraft several
: PmhltP.st,v 0 ,. ,

d l<..,:,,,,,:,.,. s,=.. _,./ c,. _v./._r/..t_,,.a_...,,I interesting correlations found in
"12 °**'. the study of bird flight may be

-. ., k.:, _ I .... - ....... ;,, _._ expected for the model flight
... 1)/ ".>.'"' _1_ _ ,'.:*,- -;"_ ...... , .. I, .... !Z.U_-too

, /,,.i.- _ ....... ,:.____.,.,-,m.,..-,,.-- One can observe various applica-
_v" a:,'-_,_,,.--._-T-_- _ ....i __d_

9/.) ...... t 3s
: /.._-___ _ ;..i_!,:,,,=_.,_ _ tions of the turbulence effect in

;' % / ..'_,-_"., ,,.T _ .... L-_ I ,_¢ _ the flight of birds. For in-
./- _ c_- ' I ,I'/'_.... ---_ :,. .,.__..,_,:q_5_ stance, the single file gliding

• I'H _'-"f,'_'JL-'-,'" _' i . "I_---L Ir ',_

_,_"7 "---_--_'- _,,,__.t._7 _j_O_l,] flight of vultures may be ex-15_,_,,,_ _ ., ,,, ...... _ plained in that way, that the
_" _--_ ,--': ,, z- vulture in the lead is the tur-

: .... _--<:;--. ; "B---_ ! bulence generator for those that

65 \.,.'i,. ":,'" ;.:--:..;_- .-"_'" ' ". "'- 6_I_

_"" _0 I , 'Re , '"r'l" follow. In the v-formation
_'" i _c<_--_VOoc _i flight of migrating birds the

turbulence of the wing boundary

layer of the bird behind him

plays a role during wingflapping

flight besides the utilization of

Fig. 18. The "profile test N60"
provides the data construction the rising edge eddies and the aerial
of glider models with the lowest billow (air wave) of the bird flying

sink rates when using profile N60 immediately ahead. Utilization of
and surface loading of 12 g/dm _.

the two least mentioned effects is
Key: a - Glider model --

design data for also valid for the formation flight
minimum gliding of ducks. Moreover, the wedge

], velocity
b - wing stress formation in the flight of birds
c - _ing spread and insects -- besides utilizing
d- llft coefficient

e - glide ratio local thermals -- may be interpreted
f - wing depth as turbulence effect. As result
g - wing area
h - flight velocity of the wind tunnel test on the plaster
i - weight cast model of a seagull a critical
J - sink rate
k - aspect ratio transition at Re - 105,0C0, with a

1 - wing span glide coefficient improvement from

7.5 to 12.5, was measured [9].

t'.
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An interesting possibility for airfoil profile configuration

for the gain of great spar depths is indicated by the wing cross-

section of the vulture which is known as an excellent glider. The

, vulture wing profile has a tripping edge on the bottom side behind a

steeply cambered, thin,leading edge, which localizes the transition
vortex and maintains turbulence of the bottom side flow even at large

angles o£ attack. This edge has also been identified on storks,

_ cranes, kites and flamingos. Behind this tripping edge are the upper

,, or lower arm bo_es, respectively, and the thick extensor muscle. The

tripping edge recedes the most at the elbow. The flexor muscle, which

is particularly thin for landgliders is found in the wing's leading

edge. Upper arm, lower arm and flexor muscle form a triangle, which

is covered by the frontal section of wing skin. During comparable

observations of the gliding flight of birds Hankin [10] established

that vultures and kites, whose tripping edge at the wing bottom side

is particularly sharp, circle faster and ascend faster than eagles in

spite of higher wing surface loading. Idrac [11] could measure a

minimum sink rate of 0.42 m/s for kites at a glide velocity of 7 m/s,

which corresponds to a glide coefficient of 17.

The wing load for birds varies between 16 kg/m 2 for the albatross

to 1.7 kg/m; for the swallow, to that of the butterflies from 0.17 to

0.1 kg/m 2 (l g/dm;). Following tile aerodynamically related ex-

ample from nature, the wing load of flight models is in the same range

with 4 to 0.1 kg/m 2, where the lower limit corresponds to hangar

flight models covered with microfilm. The wing load of gliders

amounts to from 20 to 10 kg/m 2, which is 5 to 200 times as great.

Using light construction, particularly through the use of Balsa wood,

(y * 0.15 to 0.25) the model achieves an equal or smaller sinking

rate in spite of an aerodynamically limited, bad glide coefficient.

Present glider models achieve a minimum sink rate of about 0.25 m/s

in still _ir.

In Fig. 20 some examples are shown of means for generation of the /164

high lift of bird wings, which are also known to airplane technology

[12]. The soaring wring (a) of the land gliders (vulture, kite,

stork, buzzard) has an almost rectangular contour for outspread

flapping wings, which generate lift as well as forward motion according

38
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Fig. 19. Supplementary diagram for profile test N60 for models with
an aspect ratio o£ A = 10 in consideration of various sizes and loads
o£ eievator controls. F = wing area, £ = control area, F_ = f + F;
G = £1yin_, weight. I11ustrated example: f/F -- 1/5, CaE/EaF = 1/3. -.

to the angle of attack. The land gliders soar mostly in static sailing

flight in regions of thermal updrafts in front of mountain slopes, in

the leeward waves of the air current, etc. For dynamic soaring the

extended jointed wings o£ the seagoing gliders are especially suit-

able, as for instance the albatross and the seagull (c), since their

wings are easily rotated as integral unit to, take advantage of vari-

' ations of the wind. The lifting of the cover feathers of the sea-

gull from its flapping wings (c) results in a large uplift during

landing (landing flaps) and the split flap produces large drag as an

air brake. Moreover, the fixed position vortex cone vanishes without

hysteresis when the seagull continues on from this condition. The out-

spread tail of the forked tail falcon corresponds to the aileron

patent by Junkers.
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Fig. 20 High lift devices on the wings of birds : a) Landgllder | thumb feathers

as slats ,widespread finger feathers as slotted _ing| b) Forked-tall falcon with

widespread tall serving as aileron _ c) Seagull during landlr¢ w_th cover f_:athers

raised to act as slat and _Imi_er of flu;_ seI_'atlon.

The biologist E. v. ltolst [13] succeeded in interpreting the

problems of control surfaces in the flight ot large birds, elucidating

them by means of aerodynamic measurements and by designing ornithopter

models using interesting transmissions. The schematic Figure 21 [14]

presents the reciprocal varied adaptation of the angle of attack for

the large wingtip feathers and main (arm) wing flaps to the sinusoidal

motion of the wing. At the down stroke of the wing, which is per-

formed with great force, the wing tip generates lift H_ and the strong

J9 b

¢
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forward thrust S, while the main wing moves along passively. At the

upstroke the main wing, which glides along a flatter wave trajectory,

generates lift H2 which is, however, subject to a small negative

thrust R, with the wingtip now moving along passively. Only in this

manner does the bird succeed in maintaining a straight line tlight

trajectory. Without the lift performance of the main wing at the up

stroke the bird's center of gravity would move up and down with the

rhythm of the wing strokes.

This model of an ornithopter confirms, through the naturalness

of its flight qualities and good flight performances, the validity

of this insight. According to E. v. Holt, nature has employed orni-

thopter flight on four occasions with different biological materials

and at different times: (1) insects; (2) with the flying dinosaurs;

(3) with birds; and (4) with bats [15].

15. Aeronautical areas of application.

The first known flight of a flight model by the tinglishman

Stringfellow which,driven by a steam engine and two opposing pusher

prol.'ellers and built according to the prototype by ltenson, succeeded

in 1848 and is considered as the birth of modern aeronautics. Save

for the flight-mechanical data gained by Pinaud, Lilienthai, Lanley,

Lanchester, Ahlborn, etc., only few quantitative fundamentals could

be gained from tests on free flight models. The wind tunnel dis-

placed the free flight model as research apparatus, since it is by far

simpler to blow air against a I:10 scale model of an aircraft with

l0 times the velocity to attain the Re-numbers of the large aircraft. /lb5

Where airfoil tests in _ne wind tunnel are available for low Re-

numbers as well as for high Re-numbers, broader conclusions may be

drawn from flight tests on free flight models,which can be especially

important for flight trials of novel configurations as an inexpensive

preliminary test.

When flight tests are performed in a large wind tunnel then dis-

turbing influences of wind, temperature and turbulence are to be

" 41}
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• ' /'n". L a Sch_mgenf,ug o:.e_l,kunsfi_her Vogel"

I _," ",/,/_-/#4 nec_ Prof_.._r E v Hoist A

f ,_-_ -_/ , :.,..G,.,t,...... o.°n.,v.,._ lq,lJY. ,,,

:}.L u "_ R! ; _" .'.__

__, _,___- ......... ,:_ ...... -- _ _ ,,; ..... :..,--_,_ ...... --.-_...
d .... s .l, _ - ___-p,

" grre, br_.,,..,,_. _, _ _, _ ._ t\!, "_ ..... . "'" " '_ " "

\ / ,,.z\ /,"liT\\ /,,-':b\\(<,-,-. ,W_¢'A¢".

k pierre

Fig. 21. Schema of wing motion and components of the aerodynamic
force of an ornithopter model with connecting rod drive (after E.
v. llolst).

Key: a - Ornlthopter model "artificial bird" e - wing tlp
b - schematic of wing motion as analogy f - Rib

of "glide rudder fllght"of big birds g - drive rollers
c - at landing the arm flap generates h - connecting rod

the llft force H2and same repelling i - silk strings
force R J - crank

d - at takeoff the hand flap generates k - coiling plate
the lift force H] and the strong
thrust S

avoided. For measurement of nonaccelerated glider flight simple

means are sufficient: a stopwatch, tape measure, surveyor's rod for

sighting the altitude of the flight. Flight trajectory angle and

angle of attack of the airfoil can also be obtained from photographs

in front of vertical lines. The glider tests become more accurate

when a suitable catapult provides adequate velocity and gliding posi-

tion for the model. Starting of aircraft models by means of an

elastic launching rope of 10-100 m length in still air, resp.,at a

temperature inversion, permits longer test flights during which

rotary motion is measured according to the method mentioned by

Raethjen [101 with a range finder or cinetheodolite, or from the

glider according to Raspet's [17] method for observation of bird

fl ight.

For interpretation and ew_luation of model tests in the inclin

able free-flight wind tunnel and in a spinning wind tunnel, available l
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': available and additional wind tunnel measurements in the region of low

Re-numbers on airfoils, fuselages, etc., are indispensable for cor-

! rect understanding of the subcritical detailed processes and to avoid

them by providing means for local turbulence. It should also not be

too difficult to let a free flight wind tunnel operate as closed

pressure chamber by means of compressed air so as to achieve a con-

siderable increase in the Re-number and so obtain a hypercritical _

condition for small model parts.

J

The air flow around individual components can be subcritical at i"

low flight not only in model tests but also for the actual aircraft,

e.g., on profile struts, instrument supports and such, on gliders

and rotary wing aircraft. This is valid especially for flight at

great heights, since Re at 11 Km altitude is reduced to 1/2.6 and at

20 km to 1/8.5. The subcritical condition may thus occur at the loss

of velocity, not only for the components mentioned but also on ex-

tremely pointed control surfaces, e.g., propellers and on compression

vanes of motors and turbines. For the same reason a strong tapering

off of the wing tips should be avoided in high flying gliders.

Tests with manned model airplanes should also be mentioned here;

they are built as scaled down models of projected large aircraft

under consideration of the laws of similarity. Test flights that are

too dangerous for a manned aircraft, are executed by smaller, electron-

ically remote controlled jet models, as reported recently from the

U.S.A.. Such models, which were developed through long-term research

: projects, weigh no more than can be carried by one man. To change

i the trimming by weights, the ballast and accessories inside the model

are adjustable. These tests made possible the shortening of the pre-

viously required development time by a considerable amount and enormous

= lowering of the development costs, especially by elimination of tests

in the giant wind tunnel.

in addition to the already well known military applications there

will certainly be some peacetime applications for electronically re-

mote controlled models. _specially promising is their application for

42
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research of updrafts at locations for glider flight. Equipped with

radio transmitters such models may also hold promise as apparatus for I_

meterological research. I:

The foregoing explanations qualify the necessity for sponsorship

_ of model aeronautics, including small combustion engines, electronic

model equipment and particularly the aerodynamics of low Reynolds- _,.
I

numbers, which is required as a fundamental consideration. "
I
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